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Abstract:  
We offer an overview of some of the main findings from the hypergeometric sequence theories 
and integrals associated with root systems. In particular, for such multiple series and integrals, we 
list a number of summations, transformations and explicit evaluations. Interesting transformation 
formulas for poly-basic hypergeometry using some known summation formulae and the identity 
defined herein. In particular, for such multiple series and integrals, we list a number of 
summations, transformations and explicit evaluations. Interesting transformation formulas for 
poly-basic hypergeometric sequence have been constructed using some known summation 
formulae and the identity set out herein.  
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Introduction: 
Due to their applications in various fields, such as additive number theory, combinatorial analysis, 
statistical and quantum mechanics, vector spaces, etc, simple hypergeometric series have assumed 
considerable importance over the last four decades or so. They also developed a very useful method 
for analysts to unify and sub-sum various isolated findings under a common umbrella in the theory 
of numbers.The enormous mass of literature on basic hypergeometric series has become so 
important and important (or q-hypergeometric series as we sometimes call it) that their analysis 
has acquired its own separate, reputable status rather than being viewed merely as a generalization 
of the ordinary hypergeometric series. 
The discovery of Ramanujan's 'Lost' Note book by G.E. Andrews in 1976 aroused a new interest 
in these functions. He gave a beautiful account of the discovery of the 'Lost' Notebook and its 
contents in the American Mathematical Monthly in 1979. 
W.N. Bailey in 1944, gave the following result : 
If 
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The above transformation leads to multiple outcomes that play important roles in hypergeometric 
series number theory and transformation theory. We demonstrate here that this transformation can 
be used to define some poly-basic hypergeometric series transformations.

 
We shall use the following known sums of truncated series to derive our transformations. 
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Transformation and Summation Formulae : 
Here, we shall adopt the following notations and definitions. The q-rising factorial is defined as, 
for |q| < 1, 

 
A basic hypergeometric series (q-series) is defined by 
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A poly-basic hypergeometric series is defined as, 

 
A truncated basic hypergeometric series defined by 

 
We shall make use of following summation formulae of truncated basic hypergeometric series in 
our analysis. 

 
In the summation formula [Gasper and Rahman 3; App. II (II.21)] if we take 
c = aqn+1, we find the following sum, 
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In Bailey’s transform if we take ur = vr = 1, it takes the following form, 

 
which on simplifications gives (1.13) 
In this section we shall establish certain transformation formulae for poly-basic Series 
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Result and Discussion: 
In this section we shall establish our main results. 
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