
International Journal of Science and Research (IJSR) 
ISSN: 2319-7064 

SJIF (2020): 7.803 

Volume 10 Issue 8, August 2021 

www.ijsr.net 
Licensed Under Creative Commons Attribution CC BY 

Certain Transformation and Summation Formulae 

for Poly - Basic Hypergeometric Series 
 

Dr. Brijesh Pratap Singh 
 

Assistant Professor Department of Mathematics Raja Harpal Singh Mahavidhyalaya, Singramau, Jaunpur (U. P.), India 

 

 

Abstract: We offer an overview of some of the main findings from the hypergeometric sequence theories and integrals associated with 

root systems. In particular, for such multiple series and integrals, we list a number of summations, transformations and explicit 

evaluations. Interesting transformation formulas for poly - basic hypergeometric using some known summation formulae and the 

identity defined herein. In particular, for such multiple series and integrals, we list a number of summations, transformations and 

explicit evaluations. Interesting transformation formulas for poly - basic hypergeometric sequence have been constructed using some 

known summation formulae and the identity set out herein.  
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1. Introduction 
 

Due to their applications in various fields, such as additive 

number theory, combinatorial analysis, statistical and 

quantum mechanics, vector spaces, etc, simple 

hypergeometric series have assumed considerable 

importance over the last four decades or so. They also 

developed a very useful method for analysts to unify and sub 

- sum various isolated findings under a common umbrella in 

the theory of numbers. The enormous mass of literature on 

basic hypergeometric series has become so important and 

important (or q - hypergeometric series as we sometimes call 

it) that their analysis has acquired its own separate, reputable 

status rather than being viewed merely as a generalization of 

the ordinary hypergeometric series.  

 

The discovery of Ramanujan's 'Lost' Note book by G. E. 

Andrews in 1976 aroused a new interest in these functions. 

He gave a beautiful account of the discovery of the 'Lost' 

Notebook and its contents in the American Mathematical 

Monthly in 1979.  

3.1 W. N. Bailey in 1944, gave the following result:  

 

If 

 
 

and 

 

Where αr, δr, r and vr are any function of r only, such that 

the series exists, then 

 
 

The above transformation leads to multiple outcomes that 

play important roles in hypergeometric series number theory 

and transformation theory. We demonstrate here that this 

transformation can be used to define some poly - basic 

hypergeometric series transformations.  

 

 
 

We shall use the following known sums of truncated series 

to derive our transformations.  

 

 

 

 

 
Then  
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4.1 Transformation and Summation Formulae:  

 

Bailey [1] established a simple but very useful identity:  
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Making use of (3), Slater [1] provided a long list of identities 

of the Rogers - Ramanujan form. Later on, a number of 

mathematicians, notably Verma [2], Verma and Jain [1], 

Singh, U. B. [3], Denis, R. Y. [12], Singh, S. P. [4] and 

others, used the identity of Bailey (3) and created a number 

of transformation formulas and identities of various modules 

of the Rogers - Ramanujan type. Making use of this paper. 

In this paper, an attempt was made to develop certain very 

interesting transformation formulae for q - hypergeometry 

series using certain established summation formulae due to 

Verma and Jain [1] and identity (3).  

 

In the last section of this paper, making use of the following 

identity due to Verma [1], viz.,  

 

 
and summation formulae due to Verma and Jain [9], an 

attempt has been made to establish certain new summation 

and transformation formulae for basic hypergeometric 

series.  

 

Result and Discussion 
 

In this section we shall establish our main results.  

(i) Taking 

 

 

 

 
 

 

(ii) Next, if we set 
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4.3 we shall establish the transformation formulae by 

making use of (4.1.3).  

Taking 
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provided the series involving are convergent. We shall now 

use (4.3.1), (4.3.2) and (4.3.3) in order to establish the 

required transformations.  

 

(i) Replacing a by x
2
y

2 
in (4.3.1) and (4.3.2) and then taking 

 
in (4.3.1) and making use of (4.2.5) we have 

 
Where m is the greatest integer <n/2 

 

Again, taking 

 
We get after some simplifications 
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