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Abstract 
Variational and linear inequalities, approximation theory, nonlinear analysis, integral and 
differential equations and inclusions, dynamic systems theory, mathematics of fractals, 
mathematical economics (game theory, equilibrium problems, and optimisation problems), and 
mathematical modelling all rely on fixed point theory. The fixed point of some mapping F is the 
solution to many problems in pure and applied mathematics. As a result, a variety of procedures 
in numerical analysis and approximation theory result in successive approximations to the fixed 
point of an approximate mapping. 
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Introduction 
In many different domains, fixed point theory has played a significant role since 
LuitzenBrouwer's discovery of the first known fixed point theorem in 1909. It's possible to find 
several examples in the fields of optimization and approximation theory; differential equations; 
variational inequalities; and supplementary problems. In mathematics and other fields such as 
biology, engineering, physics, computer sciences, data sciences, economics, etc., Fixed Point 
Theory is an integrative theory that provides discernment and significant instruments for the 
solution of specific issues. For single-valued or set-valued mappings of metric spaces, 
topological vector spaces, posets and lattices, and Banach lattices, fixed point theorems are 
derived. For showing the presence of fixed points in mappings, it's crucial to understand 
approximation of fixed points of certain maps. Solvability of optimization and differential 
equations can be proven using it. Variational inequalities and equilibrium issues can also be 
shown to be solveable using it. 
There is a lot of interest in nonlinear analysis and optimization due to the importance and 
volume of research being done, as well as the availability of numerous new methods for 
studying them that use fixed point approximations. 
It is important to know about fixed point theory not only because it is used in the theory of 
partial differential equations, integral equations, differential inclusions, and random differential 
equations (e.g. Rus, Petruşel, Petruşel, 2008; Longa, Nieto and Son, 2016), but also because it is 
used in approximation methods (e.g. Petruşel and Yao, 2009; Mishra, Pant and Panicker, 2016). 
(i.e. Isac,Yuan, Tan, Yu, 1998; Rus, Iancu, 2000; Song, Guo, Chen, 2016). In 1973, H. Scarf 
proposed the first constructive approach for computing the fixed point of a continuous function. 
Boyd and Wong (1969), Hardy and Rogers(1973), Husain and Sehgal(1975), Caristi (1976), and 
Downing and Kirk(1977) all made generalisations of Banach's fixed point theorem in different 
directions. The source paper by Rhoades provides a comprehensive comparison of several 
definitions and fixed point theorems for contraction and contractive maps (1977). 
Fixed point 
When a point undergoes a specified transformation yet does not change, it is said to be a fixed 
point. 
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Let T : K → K be a mapping. The point x ∈ K is called a fixed point of T if x is mapped onto itself 
i.e. T x = x. 
Example.  

1. A translation does not have a starting or ending point. 

2. There is just one fixed point in a planar rotation. The only thing that will never move is 

the centre of rotation. 

There may be no fixed point in a mapping, a single fixed point, several fixed points, or an infinite 
number of fixed points in a mapping. 

i. The mapping x → x2 of R into itself has two fixed point. Indeed, the point 0 and 1 are 

fixed point. 

ii. The projection (x, y) → x of R2 onto the x-axis has infinitely many fixed points. If fact, all 

points of x-axis are fixed points. 

Fixed Point Theorems 
Maps f of a set X into itself that, under particular conditions, admit a fixed point, i.e., a point x ∈ X 
such that f(x) = x are known as fixed point theorems. Knowing whether or not there are fixed 
points is useful in a wide range of areas of analysis and topology. Let's look at an example that's 
both easy and instructive. 
Example  
Suppose we are given a system of n equations in n unknowns of the form gj (x1, . . . ,xn) = 0, j = 
1, . . . , n  
where the gj are continuous real-valued functions of the real variables xj.  
Lethj (x1, . . . ,xn) = gj (x1, . . . , xn) + xj, and for any point x = (x1, . . . , xn) define 
h(x) = (h1(x), . . . , hn(x)). Assume now that h has a fixed point ¯x ∈ Rn. 
Then it is easily seen that ¯x is a solution to the system of equations. 
.Fixed Point Theory Application 
Well-known examples of how fixed points can be used in best approximation theory, mini-max 
problem solving, mathematical economics, and variations in inequalities. [Zeidler (1986)]. 
 
Location of zeros  
Let X, Y be Banach spaces, and f : BX(x0, r) → Y be a Fr´echet differentiable map. In order to find a 
zero for f, the idea is to apply aniterative method constructing a sequence xn (starting from x0) 
so that xn+1 is the zero of the tangent of f at xn. Assuming that f 0(x)−1∈ L(Y, X) on BX(x0, r), one 
has x 

 
Theorem  
Let X, Y be Banach spaces, and f : BX(x0, r) → Y be a Fr´echet differentiable map. Assume that, for 
some λ > 0, 

(a) f0 (x0) is invertible; 

(b) ; 

(c) ; 

(d) . 

Then there exists a unique x¯ ∈ BX(x0, s) such that f(¯x) = 0. 

 
Hence Φ is Lipschitz, with Lipschitz constant less than or equal to µ/2 ≤ 1/2. Moreover, 
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which in turn gives 

 
Hence Φ is a contraction on BX(x0, s). FromBenach Theorem there exists a unique x¯ ∈ BX(x0, s) 
such that Φ(¯x) = ¯x, which implies f(¯x) = 0. 
Concerning the convergence speed of xn to ¯x, by virtue of the remark after Benach Theorem, we 
get 

 
Also, since 

 
it follows that 

 
Hence 

 
for some c ∈ (0, 1). for all large n. This is usually referred to as linear convergence of the method. 
Game Theory.  
The challenges linked to the analysis of the quality of a tangible or intangible product may be 
handled, in some situations, as problems from the game theory. Cooperative and 
noncooperative video games are also possible. At least one of the Nash equilibrium points in a 
finite noncooperative game has a finite number of components, as demonstrated by Kohlberg 
and Mertens in 1986. Nonlinear problems can benefit from using important components, 
according to Yu and Yang in 2004. For a Ky-Fan inequality and a contraction mapping in Hilbert 
space, Vuong, Strodiot, and Nguyen (2012) present some new iterative methods for discovering 
a common member of the set of points meeting it. 
We analyse a game in which there are n ≥ 2 participants and no cooperation is assumed 
between them. Each player has a strategy, which is influenced by the other players' tactics. Kk 
represents the set of all feasible tactics for the kth player, and K = K1 × · · · × Kn represents the 
set of all players' strategies. A strategy profile is a set of x ∈ K elements. Let fk: K → R be the kth 
player's loss function for each k.If 

 
A zero-sum game is one in which no points are gained or lost. Each player's goal is to minimise 
his or her loss, or to maximise his or her gain, depending on your perspective. 
Research Methodology 
Theorem 1.1 (Brouwer’s Fixed Point Theorem) 
Whenever the closed unit ball S = {x : ||x||≤ 1} is continuously being mapped from one location 
in Rn to another, a fixed point will be found. To put it another way, "any continuous mapping of 
a closed convex set in Rn into itself has a fixed point." is an analogous statement. His theorem 
was first put forth in 1912 by Brouwer, a Dutch mathematician. Proofs of this fundamental 
theorem can be found, but they all use Algebraic Topology as their starting point. However, 
Sasty and Bram, Bers, Kantorovich and Akilvo can be used as proof. It should be noted that 
theorems like this one, where the spaces are Rn subsets, aren't very useful in functional analysis, 
where the focus is on infinite dimensional subsets of function spaces. Birkhoff and Kellog were 
the first to look into this in 1922 while working on the Existence Theorem in analysis. Using a 
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compact convex subset of C[0, 1] and L2[0, 1], they found fixed points for continuous self-
mappings. A Polish mathematician named Schauder went on to make a formal statement on his 
theorem in 1930. Schauder extended these findings to compact convex subsets of normed linear 
spaces. 
Theorem 1.2 (Schauder’s Fixed Point Theorem) 
In normed space X, let C be a compact non-empty convex subset of C. Then there is a fixed point 
in every continuous mapping from C to C. Approximation is used to prove Schauder's theorem 
by first approximating the infinite-dimensional set C to the finite-dimensional set, then using 
Brouwer's theorem to show that the finite-dimensional approximation has a fixed point, and 
finally by taking the limit of this approximation as the dimension increases into the infinitesimal 
range. 
Theorem 1.3 (Schauder-Tychonoff) 
Let K be a nonvoid compact convex subset of a finite dimensional real Banach space X. Then 
every continuous function f : K → K has a fixed point. 
In the real Banach space X, let K be a compact nonvoid convex subset. Then there is a fixed point 
for every continuous function f : K → K. 
x¯ ∈K. 
Since X is homeomorphic to Rnfor some n ∈ N, we assume without loss of generality X = Rn . Also, 
we can assume K ⊂ Dn. For every x ∈Dn, 
let p(x) ∈ K be the unique point of minimum norm of the set x − K. Notice that p(x) = x for every 
x ∈ K. Moreover, p is continuous on Dn. Indeed, givenxn, x ∈Dn, with xn → x, 

 
as n → ∞. Thus x − p(xn) is a minimizing sequence as xn → x in x − K, and 
this implies the convergence p(xn) → p(x). Define now g(x) = f(p(x)). Then 
g maps continuously Dn onto K.  
As an immediate application, consider Example. If there is a compact and 
convex set K ⊂ Rnsuch that h(K) ⊂ K, then h has a fixed point ¯x ∈ K. 
The Banach contraction principle 
Definition  
Let X be a metric space equipped with a distance d. A map f : X → X is said to be Lipschitz 
continuous if there is λ ≥ 0 such that d(f(x1), f(x2)) ≤ λd(x1, x2), ∀ x1, x2∈X.The smallest λ for 
which the above inequality holds is the Lipschitz constant of f. If λ ≤ 1 f is said to be non-
expansive, if λ < 1 f is said to be a contraction. 
Theorem [Banach]  
Let f be a contraction on a complete metric space X. 
Then f has a unique fixed point x¯ ∈ X. 
Notice first that if x1, x2∈ X are fixed points of f, then 
d(x1, x2) = d(f(x1), f(x2)) ≤ λd(x1, x2) 
which imply x1 = x2. Choose now any x0∈ X, and define the iterate sequence 

Xn+1 = f(xn). By induction on n, 
d(xn+1, xn) ≤ λnd(f(x0), x0). 
If n ∈ N and m ≥ 1, 

 

 

 
Hence xn is a Cauchy sequence, and admits a limit ¯x ∈ X, for X is complete. 
Since f is continuous, we have f(¯x) = limn f(xn) = limn xn+1 = ¯x. 
Sequences of maps and fixed points 
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We'll assume that the metric space is (X, d). Our focus is on the converging fixed points issue for 
a succession of maps fn, where each map is X. 
Theorem  
Assume that each fn has at least a fixed point xn = fn(xn). Let f : X → X be a uniformly continuous 
map such that f m is a contraction for somem ≥ 1. If fn converges uniformly to f, then xn 
converges to x¯ = f(¯x).proof We first assume that f is a contraction (i.e., m = 1). Let λ < 1 be the 
Lipschitz constant of f. Given ε > 0, choose n0 = n0(ε) such that 

 
Then, for n ≥ n0, 

 

 

 
Therefore d(xn, x¯) ≤ ε, which proves the convergence. 
To prove the general case it is enough to observe that if 
d(fm(x), f m(y)) ≤ λmd(x, y)for some λ < 1, we can define a new metric d0 on X equivalent to d by 
setting 

 
Moreover, since f is uniformly continuous, fn converges uniformly to f also with 
respect to d0. Finally, f is a contraction with respect to d0. Indeed, 

 

 

 
So the problem is reduced to the previous case m = 1. 
Fixed points of non-expansive maps 
Let X be a Banach space, C ⊂ X nonvoid, closed, bounded and convex, and let f : C → C be a non-
expansive map. The problem is whether f admits a fixed point 
in C. The answer, in general, is false. 
Let X = c0 with the supremum norm. Setting C = BX(0, 1), themap f : C → C defined by 
f(x) = (1, x0, x1, . . .), for x = (x0, x1, x2, . . .) ∈ C 
is non-expansive but clearly admits no fixed points in C. 
Things are quite different in uniformly convex Banach spaces. 
Theorem [Browder-Kirk]  
Let X be a uniformly convex Banach space and C ⊂ X be nonvoid, closed, bounded and convex. If 
f : C → C is a non-expansivemap, then f has a fixed point in C. 
Let x∗∈ C be fixed, and consider a sequence rn∈ (0, 1) converging to 1. For each n ∈ N, define the 
map fn : C → C as 

 
Notice that fn is a contractions on C, hence there is a unique xn∈ C such that fn(xn) = xn. Since C is 
weakly compact, xn has a subsequence (still denoted byxn) weakly convergent to some ¯x ∈ C. 
We shall prove that ¯x is a fixed point of f. Notice first that 
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Since f is non-expansive we have 

 

 

 
But rn → 1 as n → ∞ and C is bounded, so we conclude that 

 
which yields the equality f(¯x) = x¯ 
Proposition In the hypotheses of Theorem , the set F of fixed points of f is closed and convex. 
Proof  

The first assertion is trivial. Assume then x0, x1∈ F, with x0  x1, and denote xt = (1 − t)x0 + tx1, 
with t ∈ (0, 1). We have 

 

 
 
that imply the equalities 

 

 
The proof is completed if we show that f(xt) = (1−t)x0 +tx1. This follows from 
a general fact about uniform convexity, which is recalled in the next lemma 
Lemma  
Let X be a uniformly convex Banach space, and let α, x, y ∈ X be such that 

 
For some  Then  
Proof  
Without loss of generality, we can assume t ≥ 1/2. We have 

 

 
Since the reverse inequality holds as well, and 

 
from the uniform convexity of X (but strict convexity would suffice) we get 

 
as claimed 
Review of Literature 
Several key single-valued mappings have fixed points, and their results can be applied in 
engineering, physics, computer science, economics, and communications (Alfuraidan& Ansari, 
2016). 
Fixed point theorems for non-expansive mappings were established by Browder(1965), Gohde, 
and Kirk(1966).. The proof of fixed point theorems can be divided into two categories. One 
approach proves the existence of fixed points, whereas the other approximates the point as the 
limit of an iterative series. They defined acceptable set and proved numerous fixed point 
theorems using the concept of a convex hull in metric spaces, which they generalised by Krik 
and colleagues (1972). To replace the positive real number set with an ordered Banach space, 
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Huang and Zhang (2007) recently presented the concept of a cone metric space. It was shown 
by Rezapour and Hamilbarani(2008) that a non-normal cone metric space exists, and that some 
fixed point theorems can be found in these spaces. 
It was Rao et al. who first focused on complex valued b-metric spaces, which were broader than 
complex valued metric spaces, to get fixed point findings. Many authors have followed up on 
this work by demonstrating some fixed point findings for various mappings that satisfy rational 
requirements with respect to complex valued b-metric spaces and the associated references. 
There have recently been results achieved by substituting the constant of contractive condition 
for the control functions in complex valued metric spaces by Sintunavaratet al.,Sitthikul and 
Saejung, and Singhetal. Many authors have proven various normal fixed point results for a few 
mappings that satisfy more general contractive criteria, including rational expressions with 
point-subordinate control functions as coefficients in complex valued b-metric spaces. 
Conclusion 
In the last few decades, the fixed point theory has found numerous uses. Optimisation theory, 
game theory, conflict situations and mathematical quality modelling all benefit greatly from its 
applications in these fields. 
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